Copied to
clipboard

G = C2×C33.S3order 324 = 22·34

Direct product of C2 and C33.S3

direct product, metabelian, supersoluble, monomial

Aliases: C2×C33.S3, C33.6D6, 3- 1+24D6, C6⋊(C9⋊C6), C18⋊(C3×S3), C9⋊S35C6, C92(S3×C6), (C3×C18)⋊5C6, (C32×C6).14S3, C32.21(S3×C6), (C2×3- 1+2)⋊3S3, (C6×3- 1+2)⋊2C2, (C3×3- 1+2)⋊3C22, C32(C2×C9⋊C6), (C2×C9⋊S3)⋊4C3, (C3×C9)⋊6(C2×C6), C3.3(C6×C3⋊S3), C6.7(C3×C3⋊S3), (C3×C6).40(C3×S3), C32.5(C2×C3⋊S3), (C3×C6).13(C3⋊S3), SmallGroup(324,146)

Series: Derived Chief Lower central Upper central

C1C3×C9 — C2×C33.S3
C1C3C32C3×C9C3×3- 1+2C33.S3 — C2×C33.S3
C3×C9 — C2×C33.S3
C1C2

Generators and relations for C2×C33.S3
 G = < a,b,c,d,e,f | a2=b3=c3=d3=f2=1, e3=d, ab=ba, ac=ca, ad=da, ae=ea, af=fa, bc=cb, bd=db, ebe-1=bd-1, bf=fb, cd=dc, ce=ec, fcf=c-1, de=ed, fdf=d-1, fef=d-1e2 >

Subgroups: 556 in 118 conjugacy classes, 38 normal (16 characteristic)
C1, C2, C2, C3, C3, C3, C22, S3, C6, C6, C6, C9, C9, C32, C32, D6, C2×C6, D9, C18, C18, C3×S3, C3⋊S3, C3×C6, C3×C6, C3×C9, C3×C9, 3- 1+2, 3- 1+2, C33, D18, S3×C6, C2×C3⋊S3, C9⋊C6, C9⋊S3, C3×C18, C3×C18, C2×3- 1+2, C2×3- 1+2, C3×C3⋊S3, C32×C6, C3×3- 1+2, C2×C9⋊C6, C2×C9⋊S3, C6×C3⋊S3, C33.S3, C6×3- 1+2, C2×C33.S3
Quotients: C1, C2, C3, C22, S3, C6, D6, C2×C6, C3×S3, C3⋊S3, S3×C6, C2×C3⋊S3, C9⋊C6, C3×C3⋊S3, C2×C9⋊C6, C6×C3⋊S3, C33.S3, C2×C33.S3

Smallest permutation representation of C2×C33.S3
On 54 points
Generators in S54
(1 23)(2 24)(3 25)(4 26)(5 27)(6 19)(7 20)(8 21)(9 22)(10 35)(11 36)(12 28)(13 29)(14 30)(15 31)(16 32)(17 33)(18 34)(37 52)(38 53)(39 54)(40 46)(41 47)(42 48)(43 49)(44 50)(45 51)
(2 8 5)(3 6 9)(10 13 16)(12 18 15)(19 22 25)(21 27 24)(28 34 31)(29 32 35)(37 40 43)(39 45 42)(46 49 52)(48 54 51)
(1 30 38)(2 31 39)(3 32 40)(4 33 41)(5 34 42)(6 35 43)(7 36 44)(8 28 45)(9 29 37)(10 49 19)(11 50 20)(12 51 21)(13 52 22)(14 53 23)(15 54 24)(16 46 25)(17 47 26)(18 48 27)
(1 4 7)(2 5 8)(3 6 9)(10 13 16)(11 14 17)(12 15 18)(19 22 25)(20 23 26)(21 24 27)(28 31 34)(29 32 35)(30 33 36)(37 40 43)(38 41 44)(39 42 45)(46 49 52)(47 50 53)(48 51 54)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)
(1 23)(2 22)(3 21)(4 20)(5 19)(6 27)(7 26)(8 25)(9 24)(10 42)(11 41)(12 40)(13 39)(14 38)(15 37)(16 45)(17 44)(18 43)(28 46)(29 54)(30 53)(31 52)(32 51)(33 50)(34 49)(35 48)(36 47)

G:=sub<Sym(54)| (1,23)(2,24)(3,25)(4,26)(5,27)(6,19)(7,20)(8,21)(9,22)(10,35)(11,36)(12,28)(13,29)(14,30)(15,31)(16,32)(17,33)(18,34)(37,52)(38,53)(39,54)(40,46)(41,47)(42,48)(43,49)(44,50)(45,51), (2,8,5)(3,6,9)(10,13,16)(12,18,15)(19,22,25)(21,27,24)(28,34,31)(29,32,35)(37,40,43)(39,45,42)(46,49,52)(48,54,51), (1,30,38)(2,31,39)(3,32,40)(4,33,41)(5,34,42)(6,35,43)(7,36,44)(8,28,45)(9,29,37)(10,49,19)(11,50,20)(12,51,21)(13,52,22)(14,53,23)(15,54,24)(16,46,25)(17,47,26)(18,48,27), (1,4,7)(2,5,8)(3,6,9)(10,13,16)(11,14,17)(12,15,18)(19,22,25)(20,23,26)(21,24,27)(28,31,34)(29,32,35)(30,33,36)(37,40,43)(38,41,44)(39,42,45)(46,49,52)(47,50,53)(48,51,54), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54), (1,23)(2,22)(3,21)(4,20)(5,19)(6,27)(7,26)(8,25)(9,24)(10,42)(11,41)(12,40)(13,39)(14,38)(15,37)(16,45)(17,44)(18,43)(28,46)(29,54)(30,53)(31,52)(32,51)(33,50)(34,49)(35,48)(36,47)>;

G:=Group( (1,23)(2,24)(3,25)(4,26)(5,27)(6,19)(7,20)(8,21)(9,22)(10,35)(11,36)(12,28)(13,29)(14,30)(15,31)(16,32)(17,33)(18,34)(37,52)(38,53)(39,54)(40,46)(41,47)(42,48)(43,49)(44,50)(45,51), (2,8,5)(3,6,9)(10,13,16)(12,18,15)(19,22,25)(21,27,24)(28,34,31)(29,32,35)(37,40,43)(39,45,42)(46,49,52)(48,54,51), (1,30,38)(2,31,39)(3,32,40)(4,33,41)(5,34,42)(6,35,43)(7,36,44)(8,28,45)(9,29,37)(10,49,19)(11,50,20)(12,51,21)(13,52,22)(14,53,23)(15,54,24)(16,46,25)(17,47,26)(18,48,27), (1,4,7)(2,5,8)(3,6,9)(10,13,16)(11,14,17)(12,15,18)(19,22,25)(20,23,26)(21,24,27)(28,31,34)(29,32,35)(30,33,36)(37,40,43)(38,41,44)(39,42,45)(46,49,52)(47,50,53)(48,51,54), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54), (1,23)(2,22)(3,21)(4,20)(5,19)(6,27)(7,26)(8,25)(9,24)(10,42)(11,41)(12,40)(13,39)(14,38)(15,37)(16,45)(17,44)(18,43)(28,46)(29,54)(30,53)(31,52)(32,51)(33,50)(34,49)(35,48)(36,47) );

G=PermutationGroup([[(1,23),(2,24),(3,25),(4,26),(5,27),(6,19),(7,20),(8,21),(9,22),(10,35),(11,36),(12,28),(13,29),(14,30),(15,31),(16,32),(17,33),(18,34),(37,52),(38,53),(39,54),(40,46),(41,47),(42,48),(43,49),(44,50),(45,51)], [(2,8,5),(3,6,9),(10,13,16),(12,18,15),(19,22,25),(21,27,24),(28,34,31),(29,32,35),(37,40,43),(39,45,42),(46,49,52),(48,54,51)], [(1,30,38),(2,31,39),(3,32,40),(4,33,41),(5,34,42),(6,35,43),(7,36,44),(8,28,45),(9,29,37),(10,49,19),(11,50,20),(12,51,21),(13,52,22),(14,53,23),(15,54,24),(16,46,25),(17,47,26),(18,48,27)], [(1,4,7),(2,5,8),(3,6,9),(10,13,16),(11,14,17),(12,15,18),(19,22,25),(20,23,26),(21,24,27),(28,31,34),(29,32,35),(30,33,36),(37,40,43),(38,41,44),(39,42,45),(46,49,52),(47,50,53),(48,51,54)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54)], [(1,23),(2,22),(3,21),(4,20),(5,19),(6,27),(7,26),(8,25),(9,24),(10,42),(11,41),(12,40),(13,39),(14,38),(15,37),(16,45),(17,44),(18,43),(28,46),(29,54),(30,53),(31,52),(32,51),(33,50),(34,49),(35,48),(36,47)]])

42 conjugacy classes

class 1 2A2B2C3A3B3C3D3E3F3G3H6A6B6C6D6E6F6G6H6I6J6K6L9A···9I18A···18I
order1222333333336666666666669···918···18
size1127272222336622223366272727276···66···6

42 irreducible representations

dim1111112222222266
type+++++++++
imageC1C2C2C3C6C6S3S3D6D6C3×S3C3×S3S3×C6S3×C6C9⋊C6C2×C9⋊C6
kernelC2×C33.S3C33.S3C6×3- 1+2C2×C9⋊S3C9⋊S3C3×C18C2×3- 1+2C32×C63- 1+2C33C18C3×C6C9C32C6C3
# reps1212423131626233

Matrix representation of C2×C33.S3 in GL8(𝔽19)

180000000
018000000
001800000
000180000
000018000
000001800
000000180
000000018
,
70000000
07000000
00100000
00010000
0011181800
00001000
00000001
0011001818
,
13000000
1817000000
001810000
001800000
001800100
0001181800
001800001
0001001818
,
10000000
01000000
001810000
001800000
001800100
0001181800
001800001
0001001818
,
13000000
1817000000
0011001817
000000118
000000018
001000018
000010018
000001018
,
180000000
11000000
000180000
001800000
000000018
000000180
000001800
000018000

G:=sub<GL(8,GF(19))| [18,0,0,0,0,0,0,0,0,18,0,0,0,0,0,0,0,0,18,0,0,0,0,0,0,0,0,18,0,0,0,0,0,0,0,0,18,0,0,0,0,0,0,0,0,18,0,0,0,0,0,0,0,0,18,0,0,0,0,0,0,0,0,18],[7,0,0,0,0,0,0,0,0,7,0,0,0,0,0,0,0,0,1,0,1,0,0,1,0,0,0,1,1,0,0,1,0,0,0,0,18,1,0,0,0,0,0,0,18,0,0,0,0,0,0,0,0,0,0,18,0,0,0,0,0,0,1,18],[1,18,0,0,0,0,0,0,3,17,0,0,0,0,0,0,0,0,18,18,18,0,18,0,0,0,1,0,0,1,0,1,0,0,0,0,0,18,0,0,0,0,0,0,1,18,0,0,0,0,0,0,0,0,0,18,0,0,0,0,0,0,1,18],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,18,18,18,0,18,0,0,0,1,0,0,1,0,1,0,0,0,0,0,18,0,0,0,0,0,0,1,18,0,0,0,0,0,0,0,0,0,18,0,0,0,0,0,0,1,18],[1,18,0,0,0,0,0,0,3,17,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,18,1,0,0,0,0,0,0,17,18,18,18,18,18],[18,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,18,0,0,0,0,0,0,18,0,0,0,0,0,0,0,0,0,0,0,0,18,0,0,0,0,0,0,18,0,0,0,0,0,0,18,0,0,0,0,0,0,18,0,0,0] >;

C2×C33.S3 in GAP, Magma, Sage, TeX

C_2\times C_3^3.S_3
% in TeX

G:=Group("C2xC3^3.S3");
// GroupNames label

G:=SmallGroup(324,146);
// by ID

G=gap.SmallGroup(324,146);
# by ID

G:=PCGroup([6,-2,-2,-3,-3,-3,-3,3171,735,453,2164,7781]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^2=b^3=c^3=d^3=f^2=1,e^3=d,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,b*d=d*b,e*b*e^-1=b*d^-1,b*f=f*b,c*d=d*c,c*e=e*c,f*c*f=c^-1,d*e=e*d,f*d*f=d^-1,f*e*f=d^-1*e^2>;
// generators/relations

׿
×
𝔽